
XML In MER
Ground Systems
Jesse Wright, MGSS System Architect, JPL,

jesse.wright@jpl.nasa.gov

MER: The Problem
• Fast evolution of FSW commands and telemetry requires

quick turnaround and automation to limit staffing
requirements.

• Remove requirement of delivering GDS when FSW
changed.

• New Telemetry Formats: events and products

• Documentation needs to be up to date and available
across mission users (local and remote).

• Solution: XML to define formats

Command Flow

Flight
Software

System
Engineering

Spacecraft

End
User

MERGE
Translate to

Legacy
Legacy
Tables

Sequence
process and

GUI

Command
Processor

XML

Translate to
FSW

Structures

Translate to
HTML, SQL

and PDF

Web
Documentation

System

End
User

Spacecraft

Engineering

Events

Products

APID XML

Engineering
processing and

Display

Event
Processing
and Display

Product
processing
and Display

Web
Documentation

System

Flight
Software

channel XML

event XML

product XML

Translate to
Legacy Format

Product
Assembly

translate to
HTML, SQL, and

PDF

Select
by APID

wild tools

Telemetry Flow

Size of XML Files
• MER

• 9,800 Channels,

• 800 Commands,

• 7800 Event Messages, and

• 460 Packet Definitions.

• 5,500 lines of Perl, Python and Java Code, 5,800
lines of XSLT translations

MER GDS dictionary builds & installs

0

5

10

15

20

25

30

Oc
t-
01

No
v-
01

De
c-
01

Ja
n-
02

Fe
b-
02

M
ar
-0
2

Ap
r-
02

M
ay
-0
2

Ju
n-
02

Ju
l-0
2

Au
g-
02

Se
p-
02

Oc
t-
02

No
v-
02

De
c-
02

Ja
n-
03

Fe
b-
03

M
ar
-0
3

Ap
r-
03

M
ay
-0
3

Ju
n-
03

Ju
l-0
3

Au
g-
03

Se
p-
03

Oc
t-
03

No
v-
03

De
c-
03

Ja
n-
04

Fe
b-
04

M
ar
-0
4

Ap
r-
04

M
ay
-0
4

Date (month)

N
u

m
b

e
r

o
f

d
e
li
v
e
ri

e
s
 p

e
r

m
o

n
th

apid

DP

EVR

CMD

TLM

Our experience
• No problems with misunderstandings between documentation

and system. No problems between flight and ground
implementations of commands and telemetry.

• Used master web site to record information about versions and
deployments allowed everyone to understand current
configuration. Web logs shows the activities on each testbed,
ATLO, and MSA configuration.

• On-line documentation was better than printed documentation.
Easier and faster to find information of interest.

DAWN used because I no longer have access to MER

Technology Evolution
• MER (Phase 1)

• Perl, DOM (XML::Twig), XSLT, XMLSpy, XML Schema

• Problems: took 8-12 hrs to process command and telemetry documentation. Producing channel tables would
occasionally fail because of lack of memory. Needed differences between versions (channels/commands added
and removed or changed type)

• MER (Phase 2)

• Python, Perl, Java, SAX, XSLT, XMLSpy, XML Schema, Xinclude

• Solution: used SAX parser to speed up system, remove problems with lack of memory. Added Java for
difference finding. Split channels and commands into groups for XSLT processing and XLST-FO. Made
documentation processing parallel operation so it would not delay the production of the configured GDS. Built
simple Xinclude processor in Perl to allow different products to use the same definitions. Use Python for more
complex transformations. (note: bug in python and perl)

• Problem: when xml format changed, GDS was last to know and usually found out by having processing crash.
Solution: FUTURE: Validate xml formats with Schema

• Documentation

• MySQL, Apache, PHP

Future Evolution
• Use Template System (Perl Template Toolkit) for

the creation of documentation instead of XSLT.

• Automated translation, documentation creation,
and deployment.

• Flight Software Developer instantiation of GDS
for command and telemetry development.

• Validate Against Schemas

You can find more information at http://www.relaxng.org. RELAX NG is a schema language for XML. The key features of
RELAX NG are that it:
 • is simple
 • is easy to learn
 • has both an XML syntax and a compact non-XML syntax
 • does not change the information set of an XML document
 • supports XML namespaces
 • treats attributes uniformly with elements so far as possible
 • has unrestricted support for unordered content
 • has unrestricted support for mixed content
 • has a solid theoretical basis
 • can partner with a separate data typing language (such W3C XML Schema Data types)
We use the Compact format. In the compact format element name { text } defines a tag <name>text</name>. An
attribute is defined as element name { attribute id { text }, text } defines a tag <name id="text">text</name>.
Optional counting marks are allowed after the element or attribute. These are:
 • ? preceding is optional
 • + preceding can occur one or more times
 • * preceding can occur zero or more times
RelaxNG has the idea of ordered and unordered groups of elements (note: attributes are always unordered). The ordered
group has the elements linked by a comma , the unordered group has the elements linked by a ampersand &. Parens can be
used to make the grouping clearer.
Besides the normal text and token data types, RelaxNG automatically loads the XSD data types. They can be accessed via
the namespace such as xsd:integer. Custom data types are possible.

